Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Virol ; 97(6): e0063523, 2023 Jun 29.
Article in English | MEDLINE | ID: covidwho-2327915

ABSTRACT

The stem-loop II motif (s2m) is an RNA structural element that is found in the 3' untranslated region (UTR) of many RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Though the motif was discovered over 25 years ago, its functional significance is unknown. In order to understand the importance of s2m, we created viruses with deletions or mutations of the s2m by reverse genetics and also evaluated a clinical isolate harboring a unique s2m deletion. Deletion or mutation of the s2m had no effect on growth in vitro or on growth and viral fitness in Syrian hamsters in vivo. We also compared the secondary structure of the 3' UTR of wild-type and s2m deletion viruses using selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) and dimethyl sulfate mutational profiling and sequencing (DMS-MaPseq). These experiments demonstrate that the s2m forms an independent structure and that its deletion does not alter the overall remaining 3'-UTR RNA structure. Together, these findings suggest that s2m is dispensable for SARS-CoV-2. IMPORTANCE RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), contain functional structures to support virus replication, translation, and evasion of the host antiviral immune response. The 3' untranslated region of early isolates of SARS-CoV-2 contained a stem-loop II motif (s2m), which is an RNA structural element that is found in many RNA viruses. This motif was discovered over 25 years ago, but its functional significance is unknown. We created SARS-CoV-2 with deletions or mutations of the s2m and determined the effect of these changes on viral growth in tissue culture and in rodent models of infection. Deletion or mutation of the s2m element had no effect on growth in vitro or on growth and viral fitness in Syrian hamsters in vivo. We also observed no impact of the deletion on other known RNA structures in the same region of the genome. These experiments demonstrate that s2m is dispensable for SARS-CoV-2.


Subject(s)
COVID-19 , RNA Viruses , Viruses , Animals , Cricetinae , SARS-CoV-2/genetics , 3' Untranslated Regions , Mesocricetus , Mutation
2.
Microbiol Spectr ; 11(1): e0424022, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2231582

ABSTRACT

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in December of 2019 and is responsible for millions of infections and deaths across the globe. Vaccination against SARS-CoV-2 has proven effective to contain the spread of the virus and reduce disease. The production and distribution of these vaccines occurred at a remarkable pace, largely through the employment of the novel mRNA platform. However, interruptions in supply chain and high demand for clinical grade reagents have impeded the manufacture and distribution of mRNA vaccines at a time when accelerated vaccine deployment is crucial. Furthermore, the emergence of SARS-CoV-2 variants across the globe continues to threaten the efficacy of vaccines encoding the ancestral virus spike protein. Here, we report results from preclinical studies on mRNA vaccines developed using a proprietary mRNA production process developed by GreenLight Biosciences. Two mRNA vaccines encoding the full-length, nonstabilized SARS-CoV-2 spike protein, GLB-COV2-042 and GLB-COV2-043, containing uridine and pseudouridine, respectively, were evaluated in rodents for their immunogenicity and protection from SARS-CoV-2 challenge with the ancestral strain and the Alpha (B.1.1.7) and Beta (B.1.351) variants. In mice and hamsters, both vaccines induced robust spike-specific binding and neutralizing antibodies, and in mice, vaccines induced significant T cell responses with a clear Th1 bias. In hamsters, both vaccines conferred significant protection following challenge with SARS-CoV-2 as assessed by weight loss, viral load, and virus replication in the lungs and nasopharynx. These results support the development of GLB-COV2-042 and GLB-COV2-043 for clinical use. IMPORTANCE SARS-CoV-2 continues to disrupt everyday life and cause excess morbidity and mortality worldwide. Vaccination has been key to quelling the impact of this respiratory pathogen, and mRNA vaccines have led the charge on this front. However, the emergence of SARS-CoV-2 variants has sparked fears regarding vaccine efficacy. Furthermore, SARS-CoV-2 vaccines continue to be unevenly distributed across the globe. For these reasons and despite the success of emergency authorized and licensed SARS-CoV-2 vaccines, additional vaccines are needed to meet public health demands. The studies presented here are significant as they demonstrate robust protective efficacy of mRNA vaccines developed by GreenLight Biosciences against not only wild-type SARS-CoV-2, but also Alpha and Beta variants. These results support the progression of GreenLight Biosciences SARS-CoV-2 mRNA vaccines to clinical trials as another defense against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , mRNA Vaccines , Animals , Cricetinae , Humans , Mice , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , mRNA Vaccines/immunology , SARS-CoV-2/genetics
4.
Brain ; 2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-2017742

ABSTRACT

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with acute and postacute cognitive and neuropsychiatric symptoms including impaired memory, concentration, attention, sleep and affect. Mechanisms underlying these brain symptoms remain understudied. Here we report that SARS-CoV-2-infected hamsters exhibit a lack of viral neuroinvasion despite aberrant blood-brain barrier permeability. Hamsters and patients deceased from coronavirus disease 2019 (COVID-19) also exhibit microglial activation and expression of interleukin (IL)-1ß and IL-6, especially within the hippocampus and the medulla oblongata, when compared with non-COVID control hamsters and humans who died from other infections, cardiovascular disease, uraemia or trauma. In the hippocampal dentate gyrus of both COVID-19 hamsters and humans, we observed fewer neuroblasts and immature neurons. Protracted inflammation, blood-brain barrier disruption and microglia activation may result in altered neurotransmission, neurogenesis and neuronal damage, explaining neuropsychiatric presentations of COVID-19. The involvement of the hippocampus may explain learning, memory and executive dysfunctions in COVID-19 patients.

5.
mSphere ; 7(3): e0016422, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1923114

ABSTRACT

Bourbon virus (BRBV) was first discovered in 2014 in a fatal human case. Since then it has been detected in the tick Amblyomma americanum in the states of Missouri and Kansas in the United States. Despite the high prevalence of BRBV in ticks in these states, very few human cases have been reported, and the true infection burden of BRBV in the community is unknown. Here, we developed two virus neutralization assays, a vesicular stomatitis virus (VSV)-BRBV pseudotyped rapid assay and a BRBV focus reduction neutralization assay, to assess the seroprevalence of BRBV neutralizing antibodies in human sera collected in 2020 in St. Louis, MO. Of 440 human serum samples tested, three (0.7%) were able to potently neutralize both VSV-BRBV and wild-type BRBV. These findings suggest that human infections with BRBV are more common than previously recognized. IMPORTANCE Since the discovery of the Bourbon virus (BRBV) in 2014, a total of five human cases have been identified, including two fatal cases. BRBV is thought to be transmitted by the lone star tick, which is prevalent in the eastern, southeastern, and midwestern United States. BRBV has been detected in ticks in Missouri and Kansas, and serological evidence suggests that it is also present in North Carolina. However, the true infection burden of BRBV in humans is not known. In the present study, we developed two virus neutralization assays to assess the seroprevalence of BRBV-specific antibodies in human sera collected in 2020 in St. Louis, MO. We found that a small subset of individuals are seropositive for neutralizing antibodies against BRBV. Our data suggest that BRBV infection in humans is more common than previously thought.


Subject(s)
Thogotovirus , Ticks , Animals , Antibodies, Neutralizing , Humans , Missouri/epidemiology , Seroepidemiologic Studies , United States
6.
Front Immunol ; 13: 899617, 2022.
Article in English | MEDLINE | ID: covidwho-1903023

ABSTRACT

COVID-19 emergency use authorizations and approvals for vaccines were achieved in record time. However, there remains a need to develop additional safe, effective, easy-to-produce, and inexpensive prevention to reduce the risk of acquiring SARS-CoV-2 infection. This need is due to difficulties in vaccine manufacturing and distribution, vaccine hesitancy, and, critically, the increased prevalence of SARS-CoV-2 variants with greater contagiousness or reduced sensitivity to immunity. Antibodies from eggs of hens (immunoglobulin Y; IgY) that were administered the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein were developed for use as nasal drops to capture the virus on the nasal mucosa. Although initially raised against the 2019 novel coronavirus index strain (2019-nCoV), these anti-SARS-CoV-2 RBD IgY surprisingly had indistinguishable enzyme-linked immunosorbent assay binding against variants of concern that have emerged, including Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529). This is different from sera of immunized or convalescent patients. Culture neutralization titers against available Alpha, Beta, and Delta were also indistinguishable from the index SARS-CoV-2 strain. Efforts to develop these IgY for clinical use demonstrated that the intranasal anti-SARS-CoV-2 RBD IgY preparation showed no binding (cross-reactivity) to a variety of human tissues and had an excellent safety profile in rats following 28-day intranasal delivery of the formulated IgY. A double-blind, randomized, placebo-controlled phase 1 study evaluating single-ascending and multiple doses of anti-SARS-CoV-2 RBD IgY administered intranasally for 14 days in 48 healthy adults also demonstrated an excellent safety and tolerability profile, and no evidence of systemic absorption. As these antiviral IgY have broad selectivity against many variants of concern, are fast to produce, and are a low-cost product, their use as prophylaxis to reduce SARS-CoV-2 viral transmission warrants further evaluation. Clinical Trial Registration: https://www.clinicaltrials.gov/ct2/show/NCT04567810, identifier NCT04567810.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , COVID-19/prevention & control , Chickens , Female , Humans , Immunoglobulins , Rats , Spike Glycoprotein, Coronavirus
7.
Sci Rep ; 12(1): 9462, 2022 06 08.
Article in English | MEDLINE | ID: covidwho-1890265

ABSTRACT

Although vaccines have been evaluated and approved for SARS-CoV-2 infection prevention, there remains a lack of effective treatments to reduce the mortality of COVID-19 patients already infected with SARS-CoV-2. The global data on COVID-19 showed that men have a higher mortality rate than women. We further observed that the proportion of mortality of females increases starting from around the age of 55 significantly. Thus, sex is an essential factor associated with COVID-19 mortality, and sex related genetic factors could be interesting mechanisms and targets for COVID-19 treatment. However, the associated sex factors and signaling pathways remain unclear. Here, we propose to uncover the potential sex associated factors using systematic and integrative network analysis. The unique results indicated that estrogens, e.g., estrone and estriol, (1) interacting with ESR1/2 receptors, (2) can inhibit SARS-CoV-2 caused inflammation and immune response signaling in host cells; and (3) estrogens are associated with the distinct fatality rates between male and female COVID-19 patients. Specifically, a high level of estradiol protects young female COVID-19 patients, and estrogens drop to an extremely low level in females after about 55 years of age causing the increased fatality rate of women. In conclusion, estrogen, interacting with ESR1/2 receptors, is an essential sex factor that protects COVID-19 patients from death by inhibiting inflammation and immune response caused by SARS-CoV-2 infection. Moreover, medications boosting the down-stream signaling of ESR1/ESR2, or inhibiting the inflammation and immune-associated targets on the signaling network can be potentially effective or synergistic combined with other existing drugs for COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Estradiol/therapeutic use , Estrogens/metabolism , Female , Humans , Immunity , Inflammation , Male , SARS-CoV-2 , Sex Factors
8.
Cell Stem Cell ; 29(5): 810-825.e8, 2022 05 05.
Article in English | MEDLINE | ID: covidwho-1819607

ABSTRACT

Trophoblast organoids derived from placental villi provide a 3D model system of human placental development, but access to first-trimester tissues is limited. Here, we report that trophoblast stem cells isolated from naive human pluripotent stem cells (hPSCs) can efficiently self-organize into 3D stem-cell-derived trophoblast organoids (SC-TOs) with a villous architecture similar to primary trophoblast organoids. Single-cell transcriptome analysis reveals the presence of distinct cytotrophoblast and syncytiotrophoblast clusters and a small cluster of extravillous trophoblasts, which closely correspond to trophoblast identities in the post-implantation embryo. These organoid cultures display clonal X chromosome inactivation patterns previously described in the human placenta. We further demonstrate that SC-TOs exhibit selective vulnerability to emerging pathogens (SARS-CoV-2 and Zika virus), which correlates with expression levels of their respective entry factors. The generation of trophoblast organoids from naive hPSCs provides an accessible 3D model system of the developing placenta and its susceptibility to emerging pathogens.


Subject(s)
COVID-19 , Pluripotent Stem Cells , Zika Virus Infection , Zika Virus , Cell Differentiation , Female , Humans , Organoids , Placenta/metabolism , Placentation , Pluripotent Stem Cells/metabolism , Pregnancy , SARS-CoV-2 , Trophoblasts/metabolism , Zika Virus Infection/metabolism
9.
Med (N Y) ; 3(5): 309-324.e6, 2022 05 13.
Article in English | MEDLINE | ID: covidwho-1796324

ABSTRACT

BACKGROUND: Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, viral variants with greater transmissibility or immune-evasion properties have arisen, which could jeopardize recently deployed vaccine- and antibody-based countermeasures. METHODS: Here, we evaluated in mice and hamsters the efficacy of a pre-clinical version of the Moderna mRNA vaccine (mRNA-1273) and the Johnson & Johnson recombinant adenoviral-vectored vaccine (Ad26.COV2.S) against the B.1.621 (Mu) variant of SARS-CoV-2, which contains spike mutations T95I, Y144S, Y145N, R346K, E484K, N501Y, D614G, P681H, and D950N. FINDINGS: Immunization of 129S2 and K18-human ACE2 transgenic mice with the mRNA-1273 vaccine protected against weight loss, lung infection, and lung pathology after challenge with the B.1.621 or WA1/2020 N501Y/D614G SARS-CoV-2 strain. Similarly, immunization of 129S2 mice and Syrian hamsters with a high dose of Ad26.COV2.S reduced lung infection after B.1.621 virus challenge. CONCLUSIONS: Thus, immunity induced by the mRNA-1273 or Ad26.COV2.S vaccine can protect against the B.1.621 variant of SARS-CoV-2 in multiple animal models. FUNDING: This study was supported by the NIH (R01 AI157155 and U01 AI151810), NIAID Centers of Excellence for Influenza Research and Response [CEIRR] contracts 75N93021C00014 and 75N93021C00016, and the Collaborative Influenza Vaccine Innovation Centers [CIVIC] contract 75N93019C00051. It was also supported, in part, by the National Institutes of Allergy and Infectious Diseases Center for Research on Influenza Pathogenesis (HHSN272201400008C) and the Japan Program for Infectious Diseases Research and Infrastructure (JP21wm0125002) from the Japan Agency for Medical Research and Development (AMED).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Influenza, Human , mRNA Vaccines , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/pharmacology , Ad26COVS1 , Animals , Antibodies, Neutralizing , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Cricetinae , Humans , Mice , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , mRNA Vaccines/immunology , mRNA Vaccines/pharmacology
10.
Nature ; 605(7911): 640-652, 2022 05.
Article in English | MEDLINE | ID: covidwho-1773987

ABSTRACT

The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Biological Evolution , COVID-19 Vaccines , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemics/prevention & control , Pharmacogenomic Variants , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , United States/epidemiology , Virulence
11.
Cell ; 185(9): 1549-1555.e11, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1748149

ABSTRACT

The rapid spread of the SARS-CoV-2 Omicron (B.1.1.529) variant, including in highly vaccinated populations, has raised important questions about the efficacy of current vaccines. In this study, we show that the mRNA-based BNT162b2 vaccine and the adenovirus-vector-based Ad26.COV2.S vaccine provide robust protection against high-dose challenge with the SARS-CoV-2 Omicron variant in cynomolgus macaques. We vaccinated 30 macaques with homologous and heterologous prime-boost regimens with BNT162b2 and Ad26.COV2.S. Following Omicron challenge, vaccinated macaques demonstrated rapid control of virus in bronchoalveolar lavage, and most vaccinated animals also controlled virus in nasal swabs. However, 4 vaccinated animals that had moderate Omicron-neutralizing antibody titers and undetectable Omicron CD8+ T cell responses failed to control virus in the upper respiratory tract. Moreover, virologic control correlated with both antibody and T cell responses. These data suggest that both humoral and cellular immune responses contribute to vaccine protection against a highly mutated SARS-CoV-2 variant.


Subject(s)
Ad26COVS1/immunology , BNT162 Vaccine/immunology , COVID-19 , Macaca , SARS-CoV-2 , Ad26COVS1/administration & dosage , Animals , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , T-Lymphocytes/immunology
12.
mBio ; : e0337721, 2022 Jan 18.
Article in English | MEDLINE | ID: covidwho-1637923

ABSTRACT

Pathogenic coronaviruses are a major threat to global public health. Here, using a recombinant reporter virus-based compound screening approach, we identified small-molecule inhibitors that potently block the replication of severe acute respiratory syndrome virus 2 (SARS-CoV-2). Among them, JIB-04 inhibited SARS-CoV-2 replication in Vero E6 cells with a 50% effective concentration of 695 nM, with a specificity index of greater than 1,000. JIB-04 showed in vitro antiviral activity in multiple cell types, including primary human bronchial epithelial cells, against several DNA and RNA viruses, including porcine coronavirus transmissible gastroenteritis virus. In an in vivo porcine model of coronavirus infection, administration of JIB-04 reduced virus infection and associated tissue pathology, which resulted in improved weight gain and survival. These results highlight the potential utility of JIB-04 as an antiviral agent against SARS-CoV-2 and other viral pathogens. IMPORTANCE The coronavirus disease 2019 (COVID-19), the disease caused by SARS-CoV-2 infection, is an ongoing public health disaster worldwide. Although several vaccines are available as a preventive measure and the FDA approval of an orally bioavailable drug is on the horizon, there remains a need for developing antivirals against SARS-CoV-2 that could work on the early course of infection. By using infectious reporter viruses, we screened small-molecule inhibitors for antiviral activity against SARS-CoV-2. Among the top hits was JIB-04, a compound previously studied for its anticancer activity. Here, we showed that JIB-04 inhibits the replication of SARS-CoV-2 as well as different DNA and RNA viruses. Furthermore, JIB-04 conferred protection in a porcine model of coronavirus infection, although to a lesser extent when given as therapeutic rather than prophylactic doses. Our findings indicate a limited but still promising utility of JIB-04 as an antiviral agent in the combat against COVID-19 and potentially other viral diseases.

13.
Nature ; 601(7893): 410-414, 2022 01.
Article in English | MEDLINE | ID: covidwho-1521758

ABSTRACT

The CVnCoV (CureVac) mRNA vaccine for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was recently evaluated in a phase 2b/3 efficacy trial in humans1. CV2CoV is a second-generation mRNA vaccine containing non-modified nucleosides but with optimized non-coding regions and enhanced antigen expression. Here we report the results of a head-to-head comparison of the immunogenicity and protective efficacy of CVnCoV and CV2CoV in non-human primates. We immunized 18 cynomolgus macaques with two doses of 12 µg lipid nanoparticle-formulated CVnCoV or CV2CoV or with sham (n = 6 per group). Compared with CVnCoV, CV2CoV induced substantially higher titres of binding and neutralizing antibodies, memory B cell responses and T cell responses as well as more potent neutralizing antibody responses against SARS-CoV-2 variants, including the Delta variant. Moreover, CV2CoV was found to be comparably immunogenic to the BNT162b2 (Pfizer) vaccine in macaques. Although CVnCoV provided partial protection against SARS-CoV-2 challenge, CV2CoV afforded more robust protection with markedly lower viral loads in the upper and lower respiratory tracts. Binding and neutralizing antibody titres were correlated with protective efficacy. These data demonstrate that optimization of non-coding regions can greatly improve the immunogenicity and protective efficacy of a non-modified mRNA SARS-CoV-2 vaccine in non-human primates.


Subject(s)
COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Nucleosides/chemistry , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , mRNA Vaccines/genetics , mRNA Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/standards , Female , Macaca fascicularis/immunology , Male , Memory B Cells/immunology , Nucleosides/genetics , Respiratory System/immunology , Respiratory System/virology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Vaccines, Synthetic/standards , Viral Load , mRNA Vaccines/standards
14.
[Unspecified Source]; 2020.
Non-conventional in English | [Unspecified Source] | ID: grc-750478

ABSTRACT

A recently emerged betacoronavirus, SARS-CoV-2, has led to a global health crisis that calls for the identification of effective therapeutics for COVID-19 disease. Coronavirus papain-like protease (PLpro) is an attractive drug target as it is essential for viral polyprotein cleavage and for deconjugation of ISG15, an antiviral ubiquitin-like protein. We show here that 6-Thioguanine (6-TG) inhibits SARS-CoV-2 PLpro-catalyzed viral polyprotein cleavage and ISG15 deconjugation in cells and inhibits replication of SARS-CoV-2 in Vero-E6 cells and Calu3 cells at submicromolar levels. As a well-characterized FDA-approved orally delivered drug, 6-TG represents a promising therapeutic for COVID-19 and other emerging coronaviruses. One Sentence Summary: A repurposed drug that targets an essential enzymatic activity of SARS-CoV-2 represents a promising COVID-19 therapeutic.

15.
Immunity ; 54(9): 2159-2166.e6, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1454205

ABSTRACT

The emergence of SARS-CoV-2 antigenic variants with increased transmissibility is a public health threat. Some variants show substantial resistance to neutralization by SARS-CoV-2 infection- or vaccination-induced antibodies. Here, we analyzed receptor binding domain-binding monoclonal antibodies derived from SARS-CoV-2 mRNA vaccine-elicited germinal center B cells for neutralizing activity against the WA1/2020 D614G SARS-CoV-2 strain and variants of concern. Of five monoclonal antibodies that potently neutralized the WA1/2020 D614G strain, all retained neutralizing capacity against the B.1.617.2 variant, four also neutralized the B.1.1.7 variant, and only one, 2C08, also neutralized the B.1.351 and B.1.1.28 variants. 2C08 reduced lung viral load and morbidity in hamsters challenged with the WA1/2020 D614G, B.1.351, or B.1.617.2 strains. Clonal analysis identified 2C08-like public clonotypes among B cells responding to SARS-CoV-2 infection or vaccination in 41 out of 181 individuals. Thus, 2C08-like antibodies can be induced by SARS-CoV-2 vaccines and mitigate resistance by circulating variants of concern.


Subject(s)
Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Germinal Center/immunology , Lung/virology , SARS-CoV-2/physiology , Animals , Cells, Cultured , Clone Cells , Cricetinae , Disease Models, Animal , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Viral Load
16.
iScience ; 24(10): 103213, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1446745

ABSTRACT

The emergence of SARS-CoV-2 has led to a global health crisis that, in addition to vaccines and immunomodulatory therapies, calls for the identification of antiviral therapeutics. The papain-like protease (PLpro) activity of nsp3 is an attractive drug target as it is essential for viral polyprotein cleavage and for deconjugation of ISG15, an antiviral ubiquitin-like protein. We show here that 6-Thioguanine (6-TG), an orally available and widely available generic drug, inhibits SARS-CoV-2 replication in Vero-E6 cells with an EC50 of approximately 2 µM. 6-TG also inhibited PLpro-catalyzed polyprotein cleavage and de-ISGylation in cells and inhibited proteolytic activity of the purified PLpro domain in vitro. We therefore propose that 6-TG is a direct-acting antiviral that could potentially be repurposed and incorporated into the set of treatment and prevention options for COVID-19.

17.
mBio ; 12(5): e0239521, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1406605

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein is the main target for neutralizing antibodies. These antibodies can be elicited through immunization or passively transferred as therapeutics in the form of convalescent-phase sera or monoclonal antibodies (MAbs). Potently neutralizing antibodies are expected to confer protection; however, it is unclear whether weakly neutralizing antibodies contribute to protection. Also, their mechanism of action in vivo is incompletely understood. Here, we demonstrate that 2B04, an antibody with an ultrapotent neutralizing activity (50% inhibitory concentration [IC50] of 0.04 µg/ml), protects hamsters against SARS-CoV-2 in a prophylactic and therapeutic infection model. Protection is associated with reduced weight loss and viral loads in nasal turbinates and lungs after challenge. MAb 2B04 also blocked aerosol transmission of the virus to naive contacts. We next examined three additional MAbs (2C02, 2C03, and 2E06), recognizing distinct epitopes within the receptor binding domain of spike protein that possess either minimal (2C02 and 2E06, IC50 > 20 µg/ml) or weak (2C03, IC50 of 5 µg/ml) virus neutralization capacity in vitro. Only 2C03 protected Syrian hamsters from weight loss and reduced lung viral load after SARS-CoV-2 infection. Finally, we demonstrated that Fc-Fc receptor interactions were not required for protection when 2B04 and 2C03 were administered prophylactically. These findings inform the mechanism of protection and support the rational development of antibody-mediated protection against SARS-CoV-2 infections. IMPORTANCE The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2, has resulted in the loss of millions of lives. Safe and effective vaccines are considered the ultimate remedy for the global social and economic disruption caused by the pandemic. However, a thorough understanding of the immune correlates of protection against this virus is lacking. Here, we characterized four different monoclonal antibodies and evaluated their ability to prevent or treat SARS-CoV-2 infection in Syrian hamsters. These antibodies varied in their ability to neutralize the virus in vitro. Prophylactic administration of potent and weakly neutralizing antibodies protected against SARS-CoV-2 infection, and this effect was Fc receptor independent. The potent neutralizing antibody also had therapeutic efficacy and eliminated onward aerosol transmission. In contrast, minimally neutralizing antibodies provided no protection against infection with SARS-CoV-2 in Syrian hamsters. Combined, these studies highlight the significance of weakly neutralizing antibodies in the protection against SARS-CoV-2 infection and associated disease.


Subject(s)
Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , COVID-19/metabolism , Receptors, Fc/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/prevention & control , Cricetinae , Male , Mesocricetus , Protein Binding
18.
Immunity ; 54(10): 2399-2416.e6, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1364126

ABSTRACT

With the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility and potential resistance, antibodies and vaccines with broadly inhibitory activity are needed. Here, we developed a panel of neutralizing anti-SARS-CoV-2 monoclonal antibodies (mAbs) that bound the receptor binding domain of the spike protein at distinct epitopes and blocked virus attachment to its host receptor, human angiotensin converting enzyme-2 (hACE2). Although several potently neutralizing mAbs protected K18-hACE2 transgenic mice against infection caused by ancestral SARS-CoV-2 strains, others induced escape variants in vivo or lost neutralizing activity against emerging strains. One mAb, SARS2-38, potently neutralized all tested SARS-CoV-2 variants of concern and protected mice against challenge by multiple SARS-CoV-2 strains. Structural analysis showed that SARS2-38 engaged a conserved epitope proximal to the receptor binding motif. Thus, treatment with or induction of neutralizing antibodies that bind conserved spike epitopes may limit the loss of potency of therapies or vaccines against emerging SARS-CoV-2 variants.


Subject(s)
Antibodies, Neutralizing/immunology , Epitopes/immunology , SARS-CoV-2/immunology , Amino Acid Motifs , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , COVID-19/prevention & control , COVID-19/virology , Epitopes/chemistry , Epitopes/metabolism , Humans , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/metabolism , Mice , Neutralization Tests , Protein Domains , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
19.
Cell Rep ; 36(3): 109400, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1283974

ABSTRACT

The development of an effective vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), is a global priority. Here, we compare the protective capacity of intranasal and intramuscular delivery of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (chimpanzee adenovirus [ChAd]-SARS-CoV-2-S) in Golden Syrian hamsters. Although immunization with ChAd-SARS-CoV-2-S induces robust spike-protein-specific antibodies capable of neutralizing the virus, antibody levels in serum are higher in hamsters vaccinated by an intranasal compared to intramuscular route. Accordingly, against challenge with SARS-CoV-2, ChAd-SARS-CoV-2-S-immunized hamsters are protected against less weight loss and have reduced viral infection in nasal swabs and lungs, and reduced pathology and inflammatory gene expression in the lungs, compared to ChAd-control immunized hamsters. Intranasal immunization with ChAd-SARS-CoV-2-S provides superior protection against SARS-CoV-2 infection and inflammation in the upper respiratory tract. These findings support intranasal administration of the ChAd-SARS-CoV-2-S candidate vaccine to prevent SARS-CoV-2 infection, disease, and possibly transmission.

20.
Nature ; 596(7870): 103-108, 2021 08.
Article in English | MEDLINE | ID: covidwho-1275940

ABSTRACT

Rapidly emerging SARS-CoV-2 variants jeopardize antibody-based countermeasures. Although cell culture experiments have demonstrated a loss of potency of several anti-spike neutralizing antibodies against variant strains of SARS-CoV-21-3, the in vivo importance of these results remains uncertain. Here we report the in vitro and in vivo activity of a panel of monoclonal antibodies (mAbs), which correspond to many in advanced clinical development by Vir Biotechnology, AbbVie, AstraZeneca, Regeneron and Lilly, against SARS-CoV-2 variant viruses. Although some individual mAbs showed reduced or abrogated neutralizing activity in cell culture against B.1.351, B.1.1.28, B.1.617.1 and B.1.526 viruses with mutations at residue E484 of the spike protein, low prophylactic doses of mAb combinations protected against infection by many variants in K18-hACE2 transgenic mice, 129S2 immunocompetent mice and hamsters, without the emergence of resistance. Exceptions were LY-CoV555 monotherapy and LY-CoV555 and LY-CoV016 combination therapy, both of which lost all protective activity, and the combination of AbbVie 2B04 and 47D11, which showed a partial loss of activity. When administered after infection, higher doses of several mAb cocktails protected in vivo against viruses with a B.1.351 spike gene. Therefore, many-but not all-of the antibody products with Emergency Use Authorization should retain substantial efficacy against the prevailing variant strains of SARS-CoV-2.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/pharmacology , Antibodies, Viral/therapeutic use , COVID-19/virology , Neutralization Tests , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/prevention & control , Chlorocebus aethiops , Female , Humans , Male , Mesocricetus/immunology , Mesocricetus/virology , Mice , Mice, Transgenic , Post-Exposure Prophylaxis , Pre-Exposure Prophylaxis , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL